x+1x−1=abx+1x−1=ab\frac{{x + 1}}{{x - 1}} = \frac{a}{b} and 1−y1+y=ba," role="presentation">1−y1+y=ba,1−y1+y=ba,\frac{{1 - y}}{{1 + y}} = \frac{b}{a}{\text{,}} then the value of x−y1+xy" role="presentation">x−y1+xyx−y1+xy\frac{{x - y}}{{1 + xy}} is?" />
x+1x−1=abx+1x−1=ab\frac{{x + 1}}{{x - 1}} = \frac{a}{b} and 1−y1+y=ba," role="presentation">1−y1+y=ba,1−y1+y=ba,\frac{{1 - y}}{{1 + y}} = \frac{b}{a}{\text{,}} then the value of x−y1+xy" role="presentation">x−y1+xyx−y1+xy\frac{{x - y}}{{1 + xy}} is?" />
x+1x−1=abx+1x−1=ab\frac{{x + 1}}{{x - 1}} = \frac{a}{b} and 1−y1+y=ba," role="presentation">1−y1+y=ba,1−y1+y=ba,\frac{{1 - y}}{{1 + y}} = \frac{b}{a}{\text{,}} then the value of x−y1+xy" role="presentation">x−y1+xyx−y1+xy\frac{{x - y}}{{1 + xy}} is?" />
India’s No.1 Educational Platform For UPSC,PSC And All Competitive Exam
If
x+1x−1=ab
and 1−y1+y=ba,
then the value of x−y1+xy
is?
Answer:- 1
Explanation:-
Solution:
Given ,x+1x−1=ab(Using componendo & dividendo)⇔x1=a+ba−b⇔x=a+ba−b.....(i)Again,1−y1+y=ba⇔1+y1−y=ab⇔1y=a+ba−b⇔y=a−ba+b.....(ii)From question,x−y1+xy⇒a+ba−b−a−ba+b1+(a+ba−b)(a−ba+b)⇒(a+b)2−(a−b)2(a2−b2)(1+1)⇒4ab2(a2−b2)⇒2ba2−b2
and 1−y1+y=ba,
then the value of x−y1+xy
is?",
"text": "If x+1x−1=ab
and 1−y1+y=ba,
then the value of x−y1+xy
is?",
"dateCreated": "7/24/2019 10:09:12 AM",
"author": {
"@type": "Person",
"name": "Nitin Sir"
},
"answerCount": "4",
"acceptedAnswer": {
"@type": "Answer",
"text": "
Solution:
Given ,x+1x−1=ab(Using componendo & dividendo)⇔x1=a+ba−b⇔x=a+ba−b.....(i)Again,1−y1+y=ba⇔1+y1−y=ab⇔1y=a+ba−b⇔y=a−ba+b.....(ii)From question,x−y1+xy⇒a+ba−b−a−ba+b1+(a+ba−b)(a−ba+b)⇒(a+b)2−(a−b)2(a2−b2)(1+1)⇒4ab2(a2−b2)⇒2ba2−b2
",
"dateCreated": "7/24/2019 10:09:12 AM",
"author": {
"@type": "Person",
"name": "Nitin Sir"
}
},
"suggestedAnswer": {
"@type": "Answer",
"text": "
Solution:
Given ,x+1x−1=ab(Using componendo & dividendo)⇔x1=a+ba−b⇔x=a+ba−b.....(i)Again,1−y1+y=ba⇔1+y1−y=ab⇔1y=a+ba−b⇔y=a−ba+b.....(ii)From question,x−y1+xy⇒a+ba−b−a−ba+b1+(a+ba−b)(a−ba+b)⇒(a+b)2−(a−b)2(a2−b2)(1+1)⇒4ab2(a2−b2)⇒2ba2−b2
",
"dateCreated": "7/24/2019 10:09:12 AM"
}
}
Post your Comments