x+1x−1=abx+1x−1=ab\frac{{x + 1}}{{x - 1}} = \frac{a}{b}   and 1−y1+y=ba," role="presentation">1−y1+y=ba,1−y1+y=ba,\frac{{1 - y}}{{1 + y}} = \frac{b}{a}{\text{,}}   then the value of x−y1+xy" role="presentation">x−y1+xyx−y1+xy\frac{{x - y}}{{1 + xy}}   is?" />
    x+1x−1=abx+1x−1=ab\frac{{x + 1}}{{x - 1}} = \frac{a}{b}   and 1−y1+y=ba," role="presentation">1−y1+y=ba,1−y1+y=ba,\frac{{1 - y}}{{1 + y}} = \frac{b}{a}{\text{,}}   then the value of x−y1+xy" role="presentation">x−y1+xyx−y1+xy\frac{{x - y}}{{1 + xy}}   is?" />
    
    
    
    x+1x−1=abx+1x−1=ab\frac{{x + 1}}{{x - 1}} = \frac{a}{b}   and 1−y1+y=ba," role="presentation">1−y1+y=ba,1−y1+y=ba,\frac{{1 - y}}{{1 + y}} = \frac{b}{a}{\text{,}}   then the value of x−y1+xy" role="presentation">x−y1+xyx−y1+xy\frac{{x - y}}{{1 + xy}}   is?" />
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
        
            
            
            
                
                    India’s No.1 Educational Platform For UPSC,PSC And All Competitive Exam
                 
             
            
            
         
     
    
    
    
    
        
            
                If 
x+1x−1=ab
   and 1−y1+y=ba,
   then the value of x−y1+xy
   is?
            
            
                
                    
                    
                        
                            
                                Answer:- 1 
                                    
                                        Explanation:-
                                        
											                    	
Solution: 
                      		Given ,x+1x−1=ab(Using componendo &  dividendo)⇔x1=a+ba−b⇔x=a+ba−b.....(i)Again,1−y1+y=ba⇔1+y1−y=ab⇔1y=a+ba−b⇔y=a−ba+b.....(ii)From question,x−y1+xy⇒a+ba−b−a−ba+b1+(a+ba−b)(a−ba+b)⇒(a+b)2−(a−b)2(a2−b2)(1+1)⇒4ab2(a2−b2)⇒2ba2−b2
                     
                    
                                     
                             
                         
                        
                     
                    
                 
                
             
         
     
       and 1−y1+y=ba,
   then the value of x−y1+xy
   is?",
        "text": "If x+1x−1=ab
   and 1−y1+y=ba,
   then the value of x−y1+xy
   is?",
        "dateCreated": "7/24/2019 10:09:12 AM",
        "author": {
        "@type": "Person",
        "name": "Nitin Sir"
        },
        "answerCount": "4",
        "acceptedAnswer": {
        "@type": "Answer",
            "text": "
											                    	Solution: 
                      		Given ,x+1x−1=ab(Using componendo &  dividendo)⇔x1=a+ba−b⇔x=a+ba−b.....(i)Again,1−y1+y=ba⇔1+y1−y=ab⇔1y=a+ba−b⇔y=a−ba+b.....(ii)From question,x−y1+xy⇒a+ba−b−a−ba+b1+(a+ba−b)(a−ba+b)⇒(a+b)2−(a−b)2(a2−b2)(1+1)⇒4ab2(a2−b2)⇒2ba2−b2
                     
                    ",
        "dateCreated": "7/24/2019 10:09:12 AM",
        "author": {
        "@type": "Person",
        "name": "Nitin Sir"
        }
        },
        "suggestedAnswer": {
        "@type": "Answer",
            "text": "
											                    	Solution: 
                      		Given ,x+1x−1=ab(Using componendo &  dividendo)⇔x1=a+ba−b⇔x=a+ba−b.....(i)Again,1−y1+y=ba⇔1+y1−y=ab⇔1y=a+ba−b⇔y=a−ba+b.....(ii)From question,x−y1+xy⇒a+ba−b−a−ba+b1+(a+ba−b)(a−ba+b)⇒(a+b)2−(a−b)2(a2−b2)(1+1)⇒4ab2(a2−b2)⇒2ba2−b2
                     
                    ",
        "dateCreated": "7/24/2019 10:09:12 AM"
        }
        }
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
Post your Comments