a=3–√−2–√3–√+2–√a=3−23+2a = \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }} and b=3+23−2," role="presentation">b=3–√+2–√3–√−2–√,b=3+23−2,b = \frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}{\text{,}} then the value of a2b" role="presentation">a2ba2b\frac{{{a^2}}}{b} + b2a" role="presentation">b2ab2a\frac{{{b^2}}}{a} = ?" />
a=3–√−2–√3–√+2–√a=3−23+2a = \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }} and b=3+23−2," role="presentation">b=3–√+2–√3–√−2–√,b=3+23−2,b = \frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}{\text{,}} then the value of a2b" role="presentation">a2ba2b\frac{{{a^2}}}{b} + b2a" role="presentation">b2ab2a\frac{{{b^2}}}{a} = ?" />
a=3–√−2–√3–√+2–√a=3−23+2a = \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }} and b=3+23−2," role="presentation">b=3–√+2–√3–√−2–√,b=3+23−2,b = \frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }}{\text{,}} then the value of a2b" role="presentation">a2ba2b\frac{{{a^2}}}{b} + b2a" role="presentation">b2ab2a\frac{{{b^2}}}{a} = ?" />
India’s No.1 Educational Platform For UPSC,PSC And All Competitive Exam
If
a=3–√−2–√3–√+2–√
and b=3–√+2–√3–√−2–√,
then the value of a2b
+ b2a
= ?
Answer:- 1
Explanation:-
Solution:
Given,a=3–√−2–√3–√+2–√, b=3–√+2–√3–√−2–√Find a2b+b2a=?⇒a2+b2ab⇒(a+b)2−3ab(a+b)ab⇒a+b=3–√−2–√3–√+2–√+3–√+2–√3–√−2–√⇒(3–√−2–√)2+(3–√+2–√)23–√2−2–√2⇒2(3–√2+2–√2)3−2⇒2×(5)1⇒a+b=10Again, ⇒a×b=3–√−2–√3–√+2–√×3–√+2–√3–√−2–√⇒ab=1⇒(a+b)3−3ab(a+b)ab⇒103−3×1×101⇒1000−30⇒970
and b=3–√+2–√3–√−2–√,
then the value of a2b
+ b2a
= ?",
"text": "If a=3–√−2–√3–√+2–√
and b=3–√+2–√3–√−2–√,
then the value of a2b
+ b2a
= ?",
"dateCreated": "7/24/2019 10:09:12 AM",
"author": {
"@type": "Person",
"name": "Nitin Sir"
},
"answerCount": "4",
"acceptedAnswer": {
"@type": "Answer",
"text": "
Solution:
Given,a=3–√−2–√3–√+2–√, b=3–√+2–√3–√−2–√Find a2b+b2a=?⇒a2+b2ab⇒(a+b)2−3ab(a+b)ab⇒a+b=3–√−2–√3–√+2–√+3–√+2–√3–√−2–√⇒(3–√−2–√)2+(3–√+2–√)23–√2−2–√2⇒2(3–√2+2–√2)3−2⇒2×(5)1⇒a+b=10Again, ⇒a×b=3–√−2–√3–√+2–√×3–√+2–√3–√−2–√⇒ab=1⇒(a+b)3−3ab(a+b)ab⇒103−3×1×101⇒1000−30⇒970
",
"dateCreated": "7/24/2019 10:09:12 AM",
"author": {
"@type": "Person",
"name": "Nitin Sir"
}
},
"suggestedAnswer": {
"@type": "Answer",
"text": "
Solution:
Given,a=3–√−2–√3–√+2–√, b=3–√+2–√3–√−2–√Find a2b+b2a=?⇒a2+b2ab⇒(a+b)2−3ab(a+b)ab⇒a+b=3–√−2–√3–√+2–√+3–√+2–√3–√−2–√⇒(3–√−2–√)2+(3–√+2–√)23–√2−2–√2⇒2(3–√2+2–√2)3−2⇒2×(5)1⇒a+b=10Again, ⇒a×b=3–√−2–√3–√+2–√×3–√+2–√3–√−2–√⇒ab=1⇒(a+b)3−3ab(a+b)ab⇒103−3×1×101⇒1000−30⇒970
",
"dateCreated": "7/24/2019 10:09:12 AM"
}
}
Post your Comments