2–√2\sqrt 2   + 3" role="presentation">3–√3\sqrt 3   and y = 1 + 2" role="presentation">2–√2\sqrt 2   - 3," role="presentation">3–√,3,\sqrt 3 {\text{,}}  then the value of x2+4xy+y2x+y" role="presentation">x2+4xy+y2x+yx2+4xy+y2x+y\frac{{{x^2} + 4xy + {y^2}}}{{x + y}}   is?" /> 2–√2\sqrt 2   + 3" role="presentation">3–√3\sqrt 3   and y = 1 + 2" role="presentation">2–√2\sqrt 2   - 3," role="presentation">3–√,3,\sqrt 3 {\text{,}}  then the value of x2+4xy+y2x+y" role="presentation">x2+4xy+y2x+yx2+4xy+y2x+y\frac{{{x^2} + 4xy + {y^2}}}{{x + y}}   is?" /> 2–√2\sqrt 2   + 3" role="presentation">3–√3\sqrt 3   and y = 1 + 2" role="presentation">2–√2\sqrt 2   - 3," role="presentation">3–√,3,\sqrt 3 {\text{,}}  then the value of x2+4xy+y2x+y" role="presentation">x2+4xy+y2x+yx2+4xy+y2x+y\frac{{{x^2} + 4xy + {y^2}}}{{x + y}}   is?" />

If x = 1 +
2
  +
3
  and y = 1 +
2
  -
3,
  then the value of
x2+4xy+y2x+y
  is?

  • 1
    22
  • 2
    2(2+2)
  • 31
  • 46
Answer:- 1
Explanation:-

Solution:
According to the question,x=1+2+3.....(i)y=1+23.....(ii)x2+4xy+y2x+y(x+y)2+2xyx+yFrom equation (i)+(ii)x+y=2+22xy=(1+2)2(3)2xy=3+223xy=22So, (x+y)2+2xyx+y=(2+22)2+2×222+22=4+8+82+422+22=12+1222+22=12(1+2)2(1+2)=6

Post your Comments

Your comments will be displayed only after manual approval.

  +
3
  and y = 1 +
2
  -
3,
  then the value of
x2+4xy+y2x+y
  is?", "text": "If x = 1 +
2
  +
3
  and y = 1 +
2
  -
3,
  then the value of
x2+4xy+y2x+y
  is?", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
According to the question,x=1+2+3.....(i)y=1+23.....(ii)x2+4xy+y2x+y(x+y)2+2xyx+yFrom equation (i)+(ii)x+y=2+22xy=(1+2)2(3)2xy=3+223xy=22So, (x+y)2+2xyx+y=(2+22)2+2×222+22=4+8+82+422+22=12+1222+22=12(1+2)2(1+2)=6
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
According to the question,x=1+2+3.....(i)y=1+23.....(ii)x2+4xy+y2x+y(x+y)2+2xyx+yFrom equation (i)+(ii)x+y=2+22xy=(1+2)2(3)2xy=3+223xy=22So, (x+y)2+2xyx+y=(2+22)2+2×222+22=4+8+82+422+22=12+1222+22=12(1+2)2(1+2)=6
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book