x+1x=3,x+1x=3,x + \frac{1}{x} = 3{\text{,}} where x≠0," role="presentation">x≠0,x≠0,x \ne 0{\text{,}} then the value of x4+3x3+5x2+3x+1x4+1" role="presentation">x4+3x3+5x2+3x+1x4+1x4+3x3+5x2+3x+1x4+1\frac{{{x^4} + 3{x^3} + 5{x^2} + 3x + 1}}{{{x^4} + 1}} = ?" />
x+1x=3,x+1x=3,x + \frac{1}{x} = 3{\text{,}} where x≠0," role="presentation">x≠0,x≠0,x \ne 0{\text{,}} then the value of x4+3x3+5x2+3x+1x4+1" role="presentation">x4+3x3+5x2+3x+1x4+1x4+3x3+5x2+3x+1x4+1\frac{{{x^4} + 3{x^3} + 5{x^2} + 3x + 1}}{{{x^4} + 1}} = ?" />
x+1x=3,x+1x=3,x + \frac{1}{x} = 3{\text{,}} where x≠0," role="presentation">x≠0,x≠0,x \ne 0{\text{,}} then the value of x4+3x3+5x2+3x+1x4+1" role="presentation">x4+3x3+5x2+3x+1x4+1x4+3x3+5x2+3x+1x4+1\frac{{{x^4} + 3{x^3} + 5{x^2} + 3x + 1}}{{{x^4} + 1}} = ?" />
India’s No.1 Educational Platform For UPSC,PSC And All Competitive Exam
If
x+1x=3,
where x≠0,
then the value of x4+3x3+5x2+3x+1x4+1
= ?
Answer:- 1
Explanation:-
Solution:
x+1x=3⇒x2+1=3x.....(i)⇒(x2+1)2=(3x)2⇒x4+1+2x2=9x2⇒x4+1=7x2.....(ii)∴x4+3x3+5x2+3x+1x4+1⇒7x2+3x3+5x2+3xx4+1⇒12x2+3x3+3x7x2From equation (i)⇒12x+3(x2+1)7x⇒12x+3×3x7x⇒21x7x⇒3
where x≠0,
then the value of x4+3x3+5x2+3x+1x4+1
= ?",
"text": "If x+1x=3,
where x≠0,
then the value of x4+3x3+5x2+3x+1x4+1
= ?",
"dateCreated": "7/24/2019 10:09:12 AM",
"author": {
"@type": "Person",
"name": "Nitin Sir"
},
"answerCount": "4",
"acceptedAnswer": {
"@type": "Answer",
"text": "
Solution:
x+1x=3⇒x2+1=3x.....(i)⇒(x2+1)2=(3x)2⇒x4+1+2x2=9x2⇒x4+1=7x2.....(ii)∴x4+3x3+5x2+3x+1x4+1⇒7x2+3x3+5x2+3xx4+1⇒12x2+3x3+3x7x2From equation (i)⇒12x+3(x2+1)7x⇒12x+3×3x7x⇒21x7x⇒3
",
"dateCreated": "7/24/2019 10:09:12 AM",
"author": {
"@type": "Person",
"name": "Nitin Sir"
}
},
"suggestedAnswer": {
"@type": "Answer",
"text": "
Solution:
x+1x=3⇒x2+1=3x.....(i)⇒(x2+1)2=(3x)2⇒x4+1+2x2=9x2⇒x4+1=7x2.....(ii)∴x4+3x3+5x2+3x+1x4+1⇒7x2+3x3+5x2+3xx4+1⇒12x2+3x3+3x7x2From equation (i)⇒12x+3(x2+1)7x⇒12x+3×3x7x⇒21x7x⇒3
",
"dateCreated": "7/24/2019 10:09:12 AM"
}
}
Post your Comments