x+1x=3,x+1x=3,x + \frac{1}{x} = 3{\text{,}}   where x≠0," role="presentation">x≠0,x≠0,x \ne 0{\text{,}}  then the value of x4+3x3+5x2+3x+1x4+1" role="presentation">x4+3x3+5x2+3x+1x4+1x4+3x3+5x2+3x+1x4+1\frac{{{x^4} + 3{x^3} + 5{x^2} + 3x + 1}}{{{x^4} + 1}}     = ?" />
    x+1x=3,x+1x=3,x + \frac{1}{x} = 3{\text{,}}   where x≠0," role="presentation">x≠0,x≠0,x \ne 0{\text{,}}  then the value of x4+3x3+5x2+3x+1x4+1" role="presentation">x4+3x3+5x2+3x+1x4+1x4+3x3+5x2+3x+1x4+1\frac{{{x^4} + 3{x^3} + 5{x^2} + 3x + 1}}{{{x^4} + 1}}     = ?" />
    
    
    
    x+1x=3,x+1x=3,x + \frac{1}{x} = 3{\text{,}}   where x≠0," role="presentation">x≠0,x≠0,x \ne 0{\text{,}}  then the value of x4+3x3+5x2+3x+1x4+1" role="presentation">x4+3x3+5x2+3x+1x4+1x4+3x3+5x2+3x+1x4+1\frac{{{x^4} + 3{x^3} + 5{x^2} + 3x + 1}}{{{x^4} + 1}}     = ?" />
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
        
            
            
            
                
                    India’s No.1 Educational Platform For UPSC,PSC And All Competitive Exam
                 
             
            
            
         
     
    
    
    
    
        
            
                If 
x+1x=3,
   where x≠0,
  then the value of x4+3x3+5x2+3x+1x4+1
     = ?
            
            
                
                    
                    
                        
                            
                                Answer:- 1 
                                    
                                        Explanation:-
                                        
											                    	
Solution: 
                      		x+1x=3⇒x2+1=3x.....(i)⇒(x2+1)2=(3x)2⇒x4+1+2x2=9x2⇒x4+1=7x2.....(ii)∴x4+3x3+5x2+3x+1x4+1⇒7x2+3x3+5x2+3xx4+1⇒12x2+3x3+3x7x2From equation (i)⇒12x+3(x2+1)7x⇒12x+3×3x7x⇒21x7x⇒3
                     
                    
                                     
                             
                         
                        
                     
                    
                 
                
             
         
     
       where x≠0,
  then the value of x4+3x3+5x2+3x+1x4+1
     = ?",
        "text": "If x+1x=3,
   where x≠0,
  then the value of x4+3x3+5x2+3x+1x4+1
     = ?",
        "dateCreated": "7/24/2019 10:09:12 AM",
        "author": {
        "@type": "Person",
        "name": "Nitin Sir"
        },
        "answerCount": "4",
        "acceptedAnswer": {
        "@type": "Answer",
            "text": "
											                    	Solution: 
                      		x+1x=3⇒x2+1=3x.....(i)⇒(x2+1)2=(3x)2⇒x4+1+2x2=9x2⇒x4+1=7x2.....(ii)∴x4+3x3+5x2+3x+1x4+1⇒7x2+3x3+5x2+3xx4+1⇒12x2+3x3+3x7x2From equation (i)⇒12x+3(x2+1)7x⇒12x+3×3x7x⇒21x7x⇒3
                     
                    ",
        "dateCreated": "7/24/2019 10:09:12 AM",
        "author": {
        "@type": "Person",
        "name": "Nitin Sir"
        }
        },
        "suggestedAnswer": {
        "@type": "Answer",
            "text": "
											                    	Solution: 
                      		x+1x=3⇒x2+1=3x.....(i)⇒(x2+1)2=(3x)2⇒x4+1+2x2=9x2⇒x4+1=7x2.....(ii)∴x4+3x3+5x2+3x+1x4+1⇒7x2+3x3+5x2+3xx4+1⇒12x2+3x3+3x7x2From equation (i)⇒12x+3(x2+1)7x⇒12x+3×3x7x⇒21x7x⇒3
                     
                    ",
        "dateCreated": "7/24/2019 10:09:12 AM"
        }
        }
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
Post your Comments