2x−12x=5,2x−12x=5,{\text{2}}x - \frac{1}{{2x}} = 5{\text{,}}    x≠0," role="presentation">x≠0,x≠0,{\text{x}} \ne {\text{0,}}   then find the value of x2+116x2−2" role="presentation">x2+116x2−2x2+116x2−2{x^2} + \frac{1}{{16{x^2}}} - 2    = ?" />
    2x−12x=5,2x−12x=5,{\text{2}}x - \frac{1}{{2x}} = 5{\text{,}}    x≠0," role="presentation">x≠0,x≠0,{\text{x}} \ne {\text{0,}}   then find the value of x2+116x2−2" role="presentation">x2+116x2−2x2+116x2−2{x^2} + \frac{1}{{16{x^2}}} - 2    = ?" />
    
    
    
    2x−12x=5,2x−12x=5,{\text{2}}x - \frac{1}{{2x}} = 5{\text{,}}    x≠0," role="presentation">x≠0,x≠0,{\text{x}} \ne {\text{0,}}   then find the value of x2+116x2−2" role="presentation">x2+116x2−2x2+116x2−2{x^2} + \frac{1}{{16{x^2}}} - 2    = ?" />
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
        
            
            
            
                
                    India’s No.1 Educational Platform For UPSC,PSC And All Competitive Exam
                 
             
            
            
         
     
    
    
    
    
        
            
                If 
2x−12x=5,
    x≠0,
   then find the value of x2+116x2−2
    = ?
            
            
                
                    
                    
                        
                            
                                Answer:- 1 
                                    
                                        Explanation:-
                                        
											                    	
Solution: 
                      		2x−12x=5Divide both sidex−14x=52Squaring both side⇒x2+116x2−2×x×14x=254⇒x2+116x2−12=254⇒x2+116x2=254+12⇒x2+116x2=274So, x2+116x2−2=274−2=194
                     
                    
                                     
                             
                         
                        
                     
                    
                 
                
             
         
     
        x≠0,
   then find the value of x2+116x2−2
    = ?",
        "text": "If 2x−12x=5,
    x≠0,
   then find the value of x2+116x2−2
    = ?",
        "dateCreated": "7/24/2019 10:09:12 AM",
        "author": {
        "@type": "Person",
        "name": "Nitin Sir"
        },
        "answerCount": "4",
        "acceptedAnswer": {
        "@type": "Answer",
            "text": "
											                    	Solution: 
                      		2x−12x=5Divide both sidex−14x=52Squaring both side⇒x2+116x2−2×x×14x=254⇒x2+116x2−12=254⇒x2+116x2=254+12⇒x2+116x2=274So, x2+116x2−2=274−2=194
                     
                    ",
        "dateCreated": "7/24/2019 10:09:12 AM",
        "author": {
        "@type": "Person",
        "name": "Nitin Sir"
        }
        },
        "suggestedAnswer": {
        "@type": "Answer",
            "text": "
											                    	Solution: 
                      		2x−12x=5Divide both sidex−14x=52Squaring both side⇒x2+116x2−2×x×14x=254⇒x2+116x2−12=254⇒x2+116x2=254+12⇒x2+116x2=274So, x2+116x2−2=274−2=194
                     
                    ",
        "dateCreated": "7/24/2019 10:09:12 AM"
        }
        }
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
Post your Comments