x=1(2–√+1),x=1(2+1),x = \frac{1}{{\left( {\sqrt 2 + 1} \right)}}{\text{,}}    the value of x2 + 2x - 1 is?" /> x=1(2–√+1),x=1(2+1),x = \frac{1}{{\left( {\sqrt 2 + 1} \right)}}{\text{,}}    the value of x2 + 2x - 1 is?" /> x=1(2–√+1),x=1(2+1),x = \frac{1}{{\left( {\sqrt 2 + 1} \right)}}{\text{,}}    the value of x2 + 2x - 1 is?" />

If
x=1(2+1),
   the value of x2 + 2x - 1 is?

  • 1
    22
  • 24
  • 30
  • 42
Answer:- 1
Explanation:-

Solution:
Given that, x=1(2+1) Then, x2+2x1=x2+2x1+11=x2+2x+12=(x+1)22Now put the value of x=(1(2+1)+1)22=(1+2+12+1)22=(2+22+1)22=((2+1)×22+1)22=(2)22=22=0

Post your Comments

Your comments will be displayed only after manual approval.

   the value of x2 + 2x - 1 is?", "text": "If
x=1(2+1),
   the value of x2 + 2x - 1 is?", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
Given that, x=1(2+1) Then, x2+2x1=x2+2x1+11=x2+2x+12=(x+1)22Now put the value of x=(1(2+1)+1)22=(1+2+12+1)22=(2+22+1)22=((2+1)×22+1)22=(2)22=22=0
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
Given that, x=1(2+1) Then, x2+2x1=x2+2x1+11=x2+2x+12=(x+1)22Now put the value of x=(1(2+1)+1)22=(1+2+12+1)22=(2+22+1)22=((2+1)×22+1)22=(2)22=22=0
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book