a2+b2c2a2+b2c2\frac{{{a^2} + {b^2}}}{{{c^2}}} = b2+c2a2" role="presentation">b2+c2a2b2+c2a2\frac{{{b^2} + {c^2}}}{{{a^2}}} = c2+a2b2" role="presentation">c2+a2b2c2+a2b2\frac{{{c^2} + {a^2}}}{{{b^2}}} = 1k," role="presentation">1k,1k,\frac{1}{k}{\text{,}} (k≠0)" role="presentation">(k≠0)(k≠0)\left( {k \ne 0} \right) then k = ?" /> a2+b2c2a2+b2c2\frac{{{a^2} + {b^2}}}{{{c^2}}} = b2+c2a2" role="presentation">b2+c2a2b2+c2a2\frac{{{b^2} + {c^2}}}{{{a^2}}} = c2+a2b2" role="presentation">c2+a2b2c2+a2b2\frac{{{c^2} + {a^2}}}{{{b^2}}} = 1k," role="presentation">1k,1k,\frac{1}{k}{\text{,}} (k≠0)" role="presentation">(k≠0)(k≠0)\left( {k \ne 0} \right) then k = ?" /> a2+b2c2a2+b2c2\frac{{{a^2} + {b^2}}}{{{c^2}}} = b2+c2a2" role="presentation">b2+c2a2b2+c2a2\frac{{{b^2} + {c^2}}}{{{a^2}}} = c2+a2b2" role="presentation">c2+a2b2c2+a2b2\frac{{{c^2} + {a^2}}}{{{b^2}}} = 1k," role="presentation">1k,1k,\frac{1}{k}{\text{,}} (k≠0)" role="presentation">(k≠0)(k≠0)\left( {k \ne 0} \right) then k = ?" />
Post your Comments