If x2=y3=z4=2x−3y+5zk,If x2=y3=z4=2x−3y+5zk,{\text{If }}\frac{x}{2} = \frac{y}{3} = \frac{z}{4} = \frac{{2x - 3y + 5z}}{k}{\text{,}}
then the value of k is -" />
If x2=y3=z4=2x−3y+5zk,If x2=y3=z4=2x−3y+5zk,{\text{If }}\frac{x}{2} = \frac{y}{3} = \frac{z}{4} = \frac{{2x - 3y + 5z}}{k}{\text{,}}
then the value of k is -" />
If x2=y3=z4=2x−3y+5zk,If x2=y3=z4=2x−3y+5zk,{\text{If }}\frac{x}{2} = \frac{y}{3} = \frac{z}{4} = \frac{{2x - 3y + 5z}}{k}{\text{,}}
then the value of k is -" />
then the value of k is -",
"dateCreated": "7/24/2019 10:09:12 AM",
"author": {
"@type": "Person",
"name": "Nitin Sir"
},
"answerCount": "4",
"acceptedAnswer": {
"@type": "Answer",
"text": "
Solution:
Let x2=y3=z4=l.Then,=x=2l,y=3l,z=4l.∴x2=2x−3y+5zk⇒2l2=2×2l−3×3l+5×4lk⇒k=4−9+20=15.
Post your Comments