If x2=y3=z4=2x−3y+5zk,If x2=y3=z4=2x−3y+5zk,{\text{If }}\frac{x}{2} = \frac{y}{3} = \frac{z}{4} = \frac{{2x - 3y + 5z}}{k}{\text{,}} then the value of k is -" /> If x2=y3=z4=2x−3y+5zk,If x2=y3=z4=2x−3y+5zk,{\text{If }}\frac{x}{2} = \frac{y}{3} = \frac{z}{4} = \frac{{2x - 3y + 5z}}{k}{\text{,}} then the value of k is -" /> If x2=y3=z4=2x−3y+5zk,If x2=y3=z4=2x−3y+5zk,{\text{If }}\frac{x}{2} = \frac{y}{3} = \frac{z}{4} = \frac{{2x - 3y + 5z}}{k}{\text{,}} then the value of k is -" />

If x2=y3=z4=2x3y+5zk,
then the value of k is -

  • 112
  • 215
  • 316
  • 418
Answer:- 1
Explanation:-

Solution:
Let x2=y3=z4=l.Then,=x=2l,y=3l,z=4l.x2=2x3y+5zk2l2=2×2l3×3l+5×4lkk=49+20=15.

Post your Comments

Your comments will be displayed only after manual approval.

then the value of k is -", "text": "
If x2=y3=z4=2x3y+5zk,
then the value of k is -", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
Let x2=y3=z4=l.Then,=x=2l,y=3l,z=4l.x2=2x3y+5zk2l2=2×2l3×3l+5×4lkk=49+20=15.
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
Let x2=y3=z4=l.Then,=x=2l,y=3l,z=4l.x2=2x3y+5zk2l2=2×2l3×3l+5×4lkk=49+20=15.
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book