Let ab:−ba=x:y.If(x - y)={ab + ba},then x is equal to - Let ab:−ba=x:y.If(x - y)={ab + ba},then x is equal to - \eqalign{ & {\text{Let }}\frac{{\text{a}}}{{\text{b}}}: - \frac{{\text{b}}}{{\text{a}}} = {\text{x}}:{\text{y}}{\text{.}} \cr & {\text{If}}\left( {{\text{x - y}}} \right) = \left\{ {\frac{{\text{a}}}{{\text{b}}}{\text{ + }}\frac{{\text{b}}}{{\text{a}}}} \right\}{\text{,}} \cr & {\text{then x is equal to - }} \cr} " /> Let ab:−ba=x:y.If(x - y)={ab + ba},then x is equal to - Let ab:−ba=x:y.If(x - y)={ab + ba},then x is equal to - \eqalign{ & {\text{Let }}\frac{{\text{a}}}{{\text{b}}}: - \frac{{\text{b}}}{{\text{a}}} = {\text{x}}:{\text{y}}{\text{.}} \cr & {\text{If}}\left( {{\text{x - y}}} \right) = \left\{ {\frac{{\text{a}}}{{\text{b}}}{\text{ + }}\frac{{\text{b}}}{{\text{a}}}} \right\}{\text{,}} \cr & {\text{then x is equal to - }} \cr} " /> Let ab:−ba=x:y.If(x - y)={ab + ba},then x is equal to - Let ab:−ba=x:y.If(x - y)={ab + ba},then x is equal to - \eqalign{ & {\text{Let }}\frac{{\text{a}}}{{\text{b}}}: - \frac{{\text{b}}}{{\text{a}}} = {\text{x}}:{\text{y}}{\text{.}} \cr & {\text{If}}\left( {{\text{x - y}}} \right) = \left\{ {\frac{{\text{a}}}{{\text{b}}}{\text{ + }}\frac{{\text{b}}}{{\text{a}}}} \right\}{\text{,}} \cr & {\text{then x is equal to - }} \cr} " />

Let ab:ba=x:y.If(x - y)={ab + ba},then x is equal to - 

  • 1(a - b)/a
  • 2(a + b)/a
  • 3(a + b)/b
  • 4None of these
Answer:- 1
Explanation:-

Solution:
xy=(ab)(ba)=a2b2y=(b2a2)x.xy=ab + bax+b2a2x=a2+b2abx(a2+b2a2)=a2+b2abx=a2ab=ab.

Post your Comments

Your comments will be displayed only after manual approval.

", "text": "
Let ab:ba=x:y.If(x - y)={ab + ba},then x is equal to - 
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
xy=(ab)(ba)=a2b2y=(b2a2)x.xy=ab + bax+b2a2x=a2+b2abx(a2+b2a2)=a2+b2abx=a2ab=ab.
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
xy=(ab)(ba)=a2b2y=(b2a2)x.xy=ab + bax+b2a2x=a2+b2abx(a2+b2a2)=a2+b2abx=a2ab=ab.
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book