If r is the remainder when each of 7654, 8506, and 9997 is divided by the greatest number d = (d > 1) then d - r is equal to = ?

  • 114
  • 218
  • 324
  • 428
Answer:- 1
Explanation:-

Solution:
d = HCF of (8506 - 7654), (9997 - 8506), (9997 - 7654)
= HCF of 857, 1491, 2343 = 213
213) 7654 (¯35639 1264 1065 199Clearly r = 199dr=213199=14

Post your Comments

Your comments will be displayed only after manual approval.

", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
d = HCF of (8506 - 7654), (9997 - 8506), (9997 - 7654)
= HCF of 857, 1491, 2343 = 213
213) 7654 (¯35639 1264 1065 199Clearly r = 199dr=213199=14
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book