34+516+7144+9400+.....34+516+7144+9400+.....\frac{3}{4} + \frac{5}{{16}} + \frac{7}{{144}} + \frac{9}{{400}} + ....." /> 34+516+7144+9400+.....34+516+7144+9400+.....\frac{3}{4} + \frac{5}{{16}} + \frac{7}{{144}} + \frac{9}{{400}} + ....." /> 34+516+7144+9400+.....34+516+7144+9400+.....\frac{3}{4} + \frac{5}{{16}} + \frac{7}{{144}} + \frac{9}{{400}} + ....." />

The sum of the first 99 terms of the series
34+516+7144+9400+.....

  • 1
    99100
  • 2
    9991000
  • 3
    999910000
  • 41
Answer:- 1
Explanation:-

Solution:
Given expression, = 414×1+949×4+16916×9+.........=(114)+(1419)+(19116)+........=(112122)+(122132)+(132142)+....99th term of the series = (199211002)Given expression,(112122)+(122132)+(132142)+....+(19821992)+(199211002)=(111002)=(1110000)=999910000

Post your Comments

Your comments will be displayed only after manual approval.

", "text": "The sum of the first 99 terms of the series
34+516+7144+9400+.....
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
Given expression, = 414×1+949×4+16916×9+.........=(114)+(1419)+(19116)+........=(112122)+(122132)+(132142)+....99th term of the series = (199211002)Given expression,(112122)+(122132)+(132142)+....+(19821992)+(199211002)=(111002)=(1110000)=999910000
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
Given expression, = 414×1+949×4+16916×9+.........=(114)+(1419)+(19116)+........=(112122)+(122132)+(132142)+....99th term of the series = (199211002)Given expression,(112122)+(122132)+(132142)+....+(19821992)+(199211002)=(111002)=(1110000)=999910000
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book