(x−y)3+(y−z)3+(z−x)3(x2−y2)3+(y2−z2)3+(z2−x2)3 is = ?(x−y)3+(y−z)3+(z−x)3(x2−y2)3+(y2−z2)3+(z2−x2)3 is = ?\frac{{{{\left( {x - y} \right)}^3} + {{\left( {y - z} \right)}^3} + {{\left( {z - x} \right)}^3}}}{{{{\left( {{x^2} - {y^2}} \right)}^3} + {{\left( {{y^2} - {z^2}} \right)}^3} + {{\left( {{z^2} - {x^2}} \right)}^3}}}{\text{ is = ?}}" /> (x−y)3+(y−z)3+(z−x)3(x2−y2)3+(y2−z2)3+(z2−x2)3 is = ?(x−y)3+(y−z)3+(z−x)3(x2−y2)3+(y2−z2)3+(z2−x2)3 is = ?\frac{{{{\left( {x - y} \right)}^3} + {{\left( {y - z} \right)}^3} + {{\left( {z - x} \right)}^3}}}{{{{\left( {{x^2} - {y^2}} \right)}^3} + {{\left( {{y^2} - {z^2}} \right)}^3} + {{\left( {{z^2} - {x^2}} \right)}^3}}}{\text{ is = ?}}" /> (x−y)3+(y−z)3+(z−x)3(x2−y2)3+(y2−z2)3+(z2−x2)3 is = ?(x−y)3+(y−z)3+(z−x)3(x2−y2)3+(y2−z2)3+(z2−x2)3 is = ?\frac{{{{\left( {x - y} \right)}^3} + {{\left( {y - z} \right)}^3} + {{\left( {z - x} \right)}^3}}}{{{{\left( {{x^2} - {y^2}} \right)}^3} + {{\left( {{y^2} - {z^2}} \right)}^3} + {{\left( {{z^2} - {x^2}} \right)}^3}}}{\text{ is = ?}}" />

The value of
(xy)3+(yz)3+(zx)3(x2y2)3+(y2z2)3+(z2x2)3 is = ?

  • 10
  • 21
  • 3
    [2(x+y+z)]1
  • 4
    [(x+y)(y+z)(z+x)]1
Answer:- 1
Explanation:-

Solution:
Since (xy)+(yz)+(zx)=0So,(xy)3+(yz)3+(zx)3=3(xy)(yz)(zx)Since(x2y2)+(y2z2)(z2x2)=0So,(x2y2)+(y2z2)(z2x2)=3(x2y2)(y2z2)(z2x2)Given expression  = 3(xy)(yz)(zx)3(x2y2)(y2z2)(z2x2)=1(x+y)(y+z)(z+x)=[(x+y)(y+z)(z+x)]1

Post your Comments

Your comments will be displayed only after manual approval.

", "text": "The value of
(xy)3+(yz)3+(zx)3(x2y2)3+(y2z2)3+(z2x2)3 is = ?
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
Since (xy)+(yz)+(zx)=0So,(xy)3+(yz)3+(zx)3=3(xy)(yz)(zx)Since(x2y2)+(y2z2)(z2x2)=0So,(x2y2)+(y2z2)(z2x2)=3(x2y2)(y2z2)(z2x2)Given expression  = 3(xy)(yz)(zx)3(x2y2)(y2z2)(z2x2)=1(x+y)(y+z)(z+x)=[(x+y)(y+z)(z+x)]1
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
Since (xy)+(yz)+(zx)=0So,(xy)3+(yz)3+(zx)3=3(xy)(yz)(zx)Since(x2y2)+(y2z2)(z2x2)=0So,(x2y2)+(y2z2)(z2x2)=3(x2y2)(y2z2)(z2x2)Given expression  = 3(xy)(yz)(zx)3(x2y2)(y2z2)(z2x2)=1(x+y)(y+z)(z+x)=[(x+y)(y+z)(z+x)]1
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book