x2−(y−z)2(x+z)2−y2 + y2−(x−z)2(x+y)2−z2+z2−(x−y)2(y+z)2−x2 is = ?x2−(y−z)2(x+z)2−y2 + y2−(x−z)2(x+y)2−z2+z2−(x−y)2(y+z)2−x2 is = ?\frac{{{x^2} - {{\left( {y - z} \right)}^2}}}{{{{\left( {x + z} \right)}^2} - {y^2}}}{\text{ + }}\frac{{{y^2} - {{\left( {x - z} \right)}^2}}}{{{{\left( {x + y} \right)}^2} - {z^2}}} + \frac{{{z^2} - {{\left( {x - y} \right)}^2}}}{{{{\left( {y + z} \right)}^2} - {x^2}}}{\text{ is = ?}}" /> x2−(y−z)2(x+z)2−y2 + y2−(x−z)2(x+y)2−z2+z2−(x−y)2(y+z)2−x2 is = ?x2−(y−z)2(x+z)2−y2 + y2−(x−z)2(x+y)2−z2+z2−(x−y)2(y+z)2−x2 is = ?\frac{{{x^2} - {{\left( {y - z} \right)}^2}}}{{{{\left( {x + z} \right)}^2} - {y^2}}}{\text{ + }}\frac{{{y^2} - {{\left( {x - z} \right)}^2}}}{{{{\left( {x + y} \right)}^2} - {z^2}}} + \frac{{{z^2} - {{\left( {x - y} \right)}^2}}}{{{{\left( {y + z} \right)}^2} - {x^2}}}{\text{ is = ?}}" /> x2−(y−z)2(x+z)2−y2 + y2−(x−z)2(x+y)2−z2+z2−(x−y)2(y+z)2−x2 is = ?x2−(y−z)2(x+z)2−y2 + y2−(x−z)2(x+y)2−z2+z2−(x−y)2(y+z)2−x2 is = ?\frac{{{x^2} - {{\left( {y - z} \right)}^2}}}{{{{\left( {x + z} \right)}^2} - {y^2}}}{\text{ + }}\frac{{{y^2} - {{\left( {x - z} \right)}^2}}}{{{{\left( {x + y} \right)}^2} - {z^2}}} + \frac{{{z^2} - {{\left( {x - y} \right)}^2}}}{{{{\left( {y + z} \right)}^2} - {x^2}}}{\text{ is = ?}}" />
Post your Comments