x+1x−1 = abx+1x−1 = ab\frac{{x + 1}}{{x - 1}}{\text{ = }}\frac{a}{b}    and 1−y1+y = ba," role="presentation">1−y1+y = ba,1−y1+y = ba,\frac{{1 - y}}{{1 + y}}{\text{ = }}\frac{b}{a}{\text{,}}    then the value of x−y1+xy" role="presentation">x−y1+xyx−y1+xy\frac{{x - y}}{{1 + xy}}   = ?" /> x+1x−1 = abx+1x−1 = ab\frac{{x + 1}}{{x - 1}}{\text{ = }}\frac{a}{b}    and 1−y1+y = ba," role="presentation">1−y1+y = ba,1−y1+y = ba,\frac{{1 - y}}{{1 + y}}{\text{ = }}\frac{b}{a}{\text{,}}    then the value of x−y1+xy" role="presentation">x−y1+xyx−y1+xy\frac{{x - y}}{{1 + xy}}   = ?" /> x+1x−1 = abx+1x−1 = ab\frac{{x + 1}}{{x - 1}}{\text{ = }}\frac{a}{b}    and 1−y1+y = ba," role="presentation">1−y1+y = ba,1−y1+y = ba,\frac{{1 - y}}{{1 + y}}{\text{ = }}\frac{b}{a}{\text{,}}    then the value of x−y1+xy" role="presentation">x−y1+xyx−y1+xy\frac{{x - y}}{{1 + xy}}   = ?" />

If
x+1x1 = ab
   and
1y1+y = ba,
   then the value of
xy1+xy
  = ?

  • 1
    2aba2b2
  • 2
    a2b22ab
  • 3
    a2+b22ab
  • 4
    a2b2ab
Answer:- 1
Explanation:-

Solution:
x+1x1 = ab By componendo and dividendox+1+x1x+1x+1=a+bab2x2=a+babx=a+bab.....(i)Again ,1y1+y = ba 1+y1y=ab1+y+1y1+y1+y=a+bab22y=a+bab1y=a+baby=aba+b.....(ii)Subtracting equation (ii) from (i) we get xy=a+bababa+b[(a+b)2(ab)2=4abanda2b2=(ab)(a+b)]=(a+b)2(ab)2(ab)(a+b)=4aba2b2Multiply equation (i) and (ii) we getxy=a+bab×aba+b=1Expression, = xy1+xy=4aba2b21+1=4ab2(a2b2)=2aba2b2

Post your Comments

Your comments will be displayed only after manual approval.

   and
1y1+y = ba,
   then the value of
xy1+xy
  = ?", "text": "If
x+1x1 = ab
   and
1y1+y = ba,
   then the value of
xy1+xy
  = ?", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
x+1x1 = ab By componendo and dividendox+1+x1x+1x+1=a+bab2x2=a+babx=a+bab.....(i)Again ,1y1+y = ba 1+y1y=ab1+y+1y1+y1+y=a+bab22y=a+bab1y=a+baby=aba+b.....(ii)Subtracting equation (ii) from (i) we get xy=a+bababa+b[(a+b)2(ab)2=4abanda2b2=(ab)(a+b)]=(a+b)2(ab)2(ab)(a+b)=4aba2b2Multiply equation (i) and (ii) we getxy=a+bab×aba+b=1Expression, = xy1+xy=4aba2b21+1=4ab2(a2b2)=2aba2b2
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
x+1x1 = ab By componendo and dividendox+1+x1x+1x+1=a+bab2x2=a+babx=a+bab.....(i)Again ,1y1+y = ba 1+y1y=ab1+y+1y1+y1+y=a+bab22y=a+bab1y=a+baby=aba+b.....(ii)Subtracting equation (ii) from (i) we get xy=a+bababa+b[(a+b)2(ab)2=4abanda2b2=(ab)(a+b)]=(a+b)2(ab)2(ab)(a+b)=4aba2b2Multiply equation (i) and (ii) we getxy=a+bab×aba+b=1Expression, = xy1+xy=4aba2b21+1=4ab2(a2b2)=2aba2b2
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book