(2+3–√2−3–√+2−3–√2+3–√+3–√−13–√+1)Simplifies to:(2+32−3+2−32+3+3−13+1)Simplifies to:\eqalign{ & \left( {\frac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }} + \frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }} + \frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right) \cr & {\text{Simplifies to:}} \cr} " /> (2+3–√2−3–√+2−3–√2+3–√+3–√−13–√+1)Simplifies to:(2+32−3+2−32+3+3−13+1)Simplifies to:\eqalign{ & \left( {\frac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }} + \frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }} + \frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right) \cr & {\text{Simplifies to:}} \cr} " /> (2+3–√2−3–√+2−3–√2+3–√+3–√−13–√+1)Simplifies to:(2+32−3+2−32+3+3−13+1)Simplifies to:\eqalign{ & \left( {\frac{{2 + \sqrt 3 }}{{2 - \sqrt 3 }} + \frac{{2 - \sqrt 3 }}{{2 + \sqrt 3 }} + \frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right) \cr & {\text{Simplifies to:}} \cr} " />

(2+323+232+3+313+1)Simplifies to:

  • 12 - √3
  • 22 + √3
  • 316 - √3
  • 440 - √3
Answer:- 1
Explanation:-

Solution:
(2+323+232+3+313+1)={(2+3)2+(23)2(23)(2+3)+313+1×3131}={4+3+43+4+34343+(31)231}={14+3+1232}=14+2(23)2=14+23=163

Post your Comments

Your comments will be displayed only after manual approval.

", "text": "
(2+323+232+3+313+1)Simplifies to:
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
(2+323+232+3+313+1)={(2+3)2+(23)2(23)(2+3)+313+1×3131}={4+3+43+4+34343+(31)231}={14+3+1232}=14+2(23)2=14+23=163
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
(2+323+232+3+313+1)={(2+3)2+(23)2(23)(2+3)+313+1×3131}={4+3+43+4+34343+(31)231}={14+3+1232}=14+2(23)2=14+23=163
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book