If a=5–√+15–√−1b = 5–√−15–√+1then the value of(a2+ab+b2a2−ab+b2) is = ?If a=5+15−1b = 5−15+1then the value of(a2+ab+b2a2−ab+b2) is = ?\eqalign{ & {\text{If }}a = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}} \cr & b{\text{ = }}\frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}} \cr & {\text{then the value of}} \cr & \left( {\frac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}} \right){\text{ is = ?}} \cr} " /> If a=5–√+15–√−1b = 5–√−15–√+1then the value of(a2+ab+b2a2−ab+b2) is = ?If a=5+15−1b = 5−15+1then the value of(a2+ab+b2a2−ab+b2) is = ?\eqalign{ & {\text{If }}a = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}} \cr & b{\text{ = }}\frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}} \cr & {\text{then the value of}} \cr & \left( {\frac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}} \right){\text{ is = ?}} \cr} " /> If a=5–√+15–√−1b = 5–√−15–√+1then the value of(a2+ab+b2a2−ab+b2) is = ?If a=5+15−1b = 5−15+1then the value of(a2+ab+b2a2−ab+b2) is = ?\eqalign{ & {\text{If }}a = \frac{{\sqrt 5 + 1}}{{\sqrt 5 - 1}} \cr & b{\text{ = }}\frac{{\sqrt 5 - 1}}{{\sqrt 5 + 1}} \cr & {\text{then the value of}} \cr & \left( {\frac{{{a^2} + ab + {b^2}}}{{{a^2} - ab + {b^2}}}} \right){\text{ is = ?}} \cr} " />

If a=5+151b = 515+1then the value of(a2+ab+b2a2ab+b2) is = ?

  • 13/4
  • 24/3
  • 33/5
  • 45/3
Answer:- 1
Explanation:-

Solution:
a+b=5+151+515+1=(5+1)2+(51)2(51)(5+1)=2[(5)2+1]51=2(5+1)4=3a.b=5+151×515+1=1Put value in expressiona2+ab+b2a2ab+b2=(a+b)2ab(ab)23ab=321323=9193=43

Post your Comments

Your comments will be displayed only after manual approval.

", "text": "
If a=5+151b = 515+1then the value of(a2+ab+b2a2ab+b2) is = ?
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
a+b=5+151+515+1=(5+1)2+(51)2(51)(5+1)=2[(5)2+1]51=2(5+1)4=3a.b=5+151×515+1=1Put value in expressiona2+ab+b2a2ab+b2=(a+b)2ab(ab)23ab=321323=9193=43
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
a+b=5+151+515+1=(5+1)2+(51)2(51)(5+1)=2[(5)2+1]51=2(5+1)4=3a.b=5+151×515+1=1Put value in expressiona2+ab+b2a2ab+b2=(a+b)2ab(ab)23ab=321323=9193=43
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book