If log5(x2+x)−log5(x+1)=2,then the value of x is - If log5(x2+x)−log5(x+1)=2,then the value of x is - \eqalign{ & {\text{If }}{\log _5}\left( {{x^2} + x} \right) - {\log _5}\left( {x + 1} \right) = 2, \cr & {\text{then the value of }}x{\text{ is - }} \cr} " /> If log5(x2+x)−log5(x+1)=2,then the value of x is - If log5(x2+x)−log5(x+1)=2,then the value of x is - \eqalign{ & {\text{If }}{\log _5}\left( {{x^2} + x} \right) - {\log _5}\left( {x + 1} \right) = 2, \cr & {\text{then the value of }}x{\text{ is - }} \cr} " /> If log5(x2+x)−log5(x+1)=2,then the value of x is - If log5(x2+x)−log5(x+1)=2,then the value of x is - \eqalign{ & {\text{If }}{\log _5}\left( {{x^2} + x} \right) - {\log _5}\left( {x + 1} \right) = 2, \cr & {\text{then the value of }}x{\text{ is - }} \cr} " />
Post your Comments