[1(logabc)+1+1(logbca)+1+1(logcab)+1]isequalto - [1(logabc)+1+1(logbca)+1+1(logcab)+1]isequalto - \eqalign{ & \left[ {\frac{1}{{\left( {{{\log }_a}bc} \right) + 1}} + \frac{1}{{\left( {{{\log }_b}ca} \right) + 1}} + \frac{1}{{\left( {{{\log }_c}ab} \right) + 1}}} \right] \cr & {\text{is}}\,\,{\text{equal}}\,{\text{to - }} \cr} " /> [1(logabc)+1+1(logbca)+1+1(logcab)+1]isequalto - [1(logabc)+1+1(logbca)+1+1(logcab)+1]isequalto - \eqalign{ & \left[ {\frac{1}{{\left( {{{\log }_a}bc} \right) + 1}} + \frac{1}{{\left( {{{\log }_b}ca} \right) + 1}} + \frac{1}{{\left( {{{\log }_c}ab} \right) + 1}}} \right] \cr & {\text{is}}\,\,{\text{equal}}\,{\text{to - }} \cr} " /> [1(logabc)+1+1(logbca)+1+1(logcab)+1]isequalto - [1(logabc)+1+1(logbca)+1+1(logcab)+1]isequalto - \eqalign{ & \left[ {\frac{1}{{\left( {{{\log }_a}bc} \right) + 1}} + \frac{1}{{\left( {{{\log }_b}ca} \right) + 1}} + \frac{1}{{\left( {{{\log }_c}ab} \right) + 1}}} \right] \cr & {\text{is}}\,\,{\text{equal}}\,{\text{to - }} \cr} " />
Post your Comments