Iflog10a=p,log10b=q,thenwhatislog10(apbq)equalto?Iflog10a=p,log10b=q,thenwhatislog10(apbq)equalto?\eqalign{ & {\text{If}}\,{\log _{10}}a = p,\,\,\,{\log _{10}}b = q, \cr & {\text{then}}\,{\text{what}}\,\,{\text{is}}\,\,{\log _{10}}\left( {{a^p}{b^q}} \right)\,\,{\text{equal}}\,\,{\text{to}}? \cr} " /> Iflog10a=p,log10b=q,thenwhatislog10(apbq)equalto?Iflog10a=p,log10b=q,thenwhatislog10(apbq)equalto?\eqalign{ & {\text{If}}\,{\log _{10}}a = p,\,\,\,{\log _{10}}b = q, \cr & {\text{then}}\,{\text{what}}\,\,{\text{is}}\,\,{\log _{10}}\left( {{a^p}{b^q}} \right)\,\,{\text{equal}}\,\,{\text{to}}? \cr} " /> Iflog10a=p,log10b=q,thenwhatislog10(apbq)equalto?Iflog10a=p,log10b=q,thenwhatislog10(apbq)equalto?\eqalign{ & {\text{If}}\,{\log _{10}}a = p,\,\,\,{\log _{10}}b = q, \cr & {\text{then}}\,{\text{what}}\,\,{\text{is}}\,\,{\log _{10}}\left( {{a^p}{b^q}} \right)\,\,{\text{equal}}\,\,{\text{to}}? \cr} " />

Iflog10a=p,log10b=q,thenwhatislog10(apbq)equalto?

  • 1p2 + q2
  • 2p2 - q2
  • 3p2q2
  • 4p2/q2
Answer:- 1
Explanation:-

Solution:
Given,log10a=p,log10b=qlog10(apbq)=log10ap+log10bq=plog10a+qlog10b=p2+q2

Post your Comments

Your comments will be displayed only after manual approval.

", "text": "
Iflog10a=p,log10b=q,thenwhatislog10(apbq)equalto?
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" }, "answerCount": "4", "acceptedAnswer": { "@type": "Answer", "text": "
Solution:
Given,log10a=p,log10b=qlog10(apbq)=log10ap+log10bq=plog10a+qlog10b=p2+q2
", "dateCreated": "7/24/2019 10:09:12 AM", "author": { "@type": "Person", "name": "Nitin Sir" } }, "suggestedAnswer": { "@type": "Answer", "text": "
Solution:
Given,log10a=p,log10b=qlog10(apbq)=log10ap+log10bq=plog10a+qlog10b=p2+q2
", "dateCreated": "7/24/2019 10:09:12 AM" } }
Test
Classes
E-Book