Quantity of salt in 6L of sea water,=(6×4)100=0.24Percentage of salt in 5L of sea water,=(0.24×100)5=445%$$\begin{array}{rl}& \text{Quantity of salt in 6L of sea water,}\\ & =\frac{\left(6\times 4\right)}{100}=0.24\\ & \text{Percentage of salt in 5L of sea water,}\\ & =\frac{\left(0.24\times 100\right)}{5}=4\frac{4}{5}\mathrm{\%}\end{array}$$
No. of population who are literate = 50% 296000 = 148000
No. of male = 166000
No. of female = 296000 - 166000 = 130000
No. of literate male = 70% of 166000 = 116200
No. of literate women = 148000 - 116200
= 31800.
They covered the distance in this way together in different hours.
6+6.5+7+7.5+8+8.5+9+9.5+10 = 72
Means,they'll meet at the 9^{th} hr. So,In that time A will cover = 4*9 = 36km. They will meet in Midway.
Let the basic salaries of A and B be x and y respectively.Now,x+65%ofx=y+80%ofyx+(65x)100=y+(80y)100xy=180165=12:11$$\begin{array}{rl}& \text{Let the basic salaries of A and B be x and y respectively}.\\ & \text{Now},\\ & x+65\mathrm{\%}\phantom{\rule{thinmathspace}{0ex}}of\phantom{\rule{thinmathspace}{0ex}}x=y+80\mathrm{\%}\phantom{\rule{thinmathspace}{0ex}}\text{of}\phantom{\rule{thinmathspace}{0ex}}y\\ & x+\frac{\left(65x\right)}{100}=y+\frac{\left(80y\right)}{100}\\ & \frac{x}{y}=\frac{180}{165}=12:11\end{array}$$
Let his original salary be Rs. 100.
Salary after increment = Rs. 120
Let the tax on original salary be 20% and now tax on increased salary (Rs. 20) will be 22% i.e. Rs. 4.40.
Thus, increase in tax liability = (6.60 /20)/100 = 22%
Quantity of water in 250 kg dry grapes,
= (10 /100) *250 = 25 kg
Then, pulp of grapes = 225 kg
We get 20 kg pulp in 100 kg fresh grapes.
To get 225 kg pulp , we need fresh grapes, = (100 *225)/20 = 1125 kg.
Total number all three got together is,=(1136+7636+11628)=20400% of vote the winning candidate got is,=(1162820400)×100=57%$$\begin{array}{rl}& \text{Total number all three got together is},\\ & =\left(1136+7636+11628\right)\\ & =20400\\ & \mathrm{\%}\text{of vote the winning candidate got is},\\ & =\left(\frac{11628}{20400}\right)\times 100\\ & =57\mathrm{\%}\end{array}$$
Let the total number of applicants be x.Number of eligible candidates=95%ofxEligible candidates of other categories,=15%of(95%ofx)=(15100)×(95100)×x=57400xor,(57400)xx=(4275×400)57=30000$$\begin{array}{rl}& \text{Let the total number of applicants be x}.\\ & \text{Number of eligible candidates}\\ & =\text{}95\mathrm{\%}\text{}of\text{}x\\ & \text{Eligible candidates of other categories},\\ & =15\mathrm{\%}\phantom{\rule{thinmathspace}{0ex}}of\phantom{\rule{thinmathspace}{0ex}}\left(95\mathrm{\%}\text{}of\text{}x\right)\\ & =\left(\frac{15}{100}\right)\times \left(\frac{95}{100}\right)\times x\\ & =\frac{57}{400}x\\ & or,\left(\frac{57}{400}\right)x\\ & x=\frac{\left(4275\times 400\right)}{57}\\ & \phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}\phantom{\rule{thinmathspace}{0ex}}=30000\end{array}$$