Hello Guest
Login
Books
E-Book
Exam
Video Class
All Subjects
PDF Study Material
Exam Wise
Subject Wise
Current Affairs
Paid Course
Install App
-
Track
×
India’s No.1 Educational Platform For UPSC,PSC And All Competitive Exam
Download Our App
Home
Books
PDF Study Material
Exam Wise
Subject Wise
Current Affairs
Free Video Class
Paid Course
Subjects
Exam
E-Book
Store91
3
Today Class
Track
Login
Simplification - 02
01.
On simplification the value of
1
−
1
1
+
2
–
√
+
1
1
−
2
–
√
is = ?
1
−
1
1
+
2
+
1
1
−
2
is = ?
1
2
2
–
√
−
1
2
2
−
1
2
1
−
2
2
–
√
1
−
2
2
3
1
−
2
–
√
1
−
2
4
−
2
2
–
√
−
2
2
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
1
−
1
1
+
2
–
√
+
1
1
−
2
–
√
=
1
−
(
2
–
√
−
1
)
(
2
–
√
+
1
)
(
2
–
√
−
1
)
−
(
2
–
√
+
1
)
(
2
–
√
−
1
)
(
2
–
√
+
1
)
=
1
−
2
–
√
+
1
−
2
–
√
−
1
=
1
−
2
2
–
√
1
−
1
1
+
2
+
1
1
−
2
=
1
−
(
2
−
1
)
(
2
+
1
)
(
2
−
1
)
−
(
2
+
1
)
(
2
−
1
)
(
2
+
1
)
=
1
−
2
+
1
−
2
−
1
=
1
−
2
2
02.
If
(
x
−
1
x
)
=
21
−
−
√
,
(
x
−
1
x
)
=
21
,
then the value of
(
x
2
+
1
x
2
)
(
x
+
1
x
)
(
x
2
+
1
x
2
)
(
x
+
1
x
)
is = ?
1
42
2
63
3
115
4
120
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
(
x
−
1
x
)
=
21
−
−
√
⇒
(
x
−
1
x
)
2
=
(
21
−
−
√
)
2
=
21
⇒
x
2
+
1
x
2
−
2
=
21
⇒
x
2
+
1
x
2
=
23
⇒
x
2
+
1
x
2
+
2
=
25
⇒
(
x
+
1
x
)
2
=
5
2
⇒
x
+
1
x
=
5
∴
(
x
2
+
1
x
2
)
(
x
+
1
x
)
=
23
×
5
=
115
(
x
−
1
x
)
=
21
⇒
(
x
−
1
x
)
2
=
(
21
)
2
=
21
⇒
x
2
+
1
x
2
−
2
=
21
⇒
x
2
+
1
x
2
=
23
⇒
x
2
+
1
x
2
+
2
=
25
⇒
(
x
+
1
x
)
2
=
5
2
⇒
x
+
1
x
=
5
∴
(
x
2
+
1
x
2
)
(
x
+
1
x
)
=
23
×
5
=
115
03.
If
(
a
+
1
a
)
=
6
,
(
a
+
1
a
)
=
6
,
then
(
a
4
+
1
a
4
)
(
a
4
+
1
a
4
)
= ?
1
1154
2
1158
3
1160
4
1164
View Answer
Discuss in forum
Workspace
Report
Answer:-
4
Explanation:-
Solution:
(
a
+
1
a
)
=
6
⇒
(
a
+
1
a
)
2
=
6
2
=
36
⇒
a
2
+
1
a
2
+
2
=
36
⇒
(
a
2
+
1
a
2
)
=
34
⇒
(
a
2
+
1
a
2
)
2
=
(
34
)
2
⇒
a
4
+
1
a
4
+
2
=
1156
⇒
(
a
4
+
1
a
4
)
=
1154.
(
a
+
1
a
)
=
6
⇒
(
a
+
1
a
)
2
=
6
2
=
36
⇒
a
2
+
1
a
2
+
2
=
36
⇒
(
a
2
+
1
a
2
)
=
34
⇒
(
a
2
+
1
a
2
)
2
=
(
34
)
2
⇒
a
4
+
1
a
4
+
2
=
1156
⇒
(
a
4
+
1
a
4
)
=
1154.
04.
The simplest value of
(
1
9
–
√
−
8
–
√
−
1
8
–
√
−
7
–
√
+
1
7
–
√
−
6
–
√
−
1
6
–
√
−
5
–
√
)
(
1
9
–
√
−
8
–
√
−
1
8
–
√
−
7
–
√
+
1
7
–
√
−
6
–
√
−
1
6
–
√
−
5
–
√
)
=
?
(
1
9
−
8
−
1
8
−
7
+
1
7
−
6
−
1
6
−
5
)
(
1
9
−
8
−
1
8
−
7
+
1
7
−
6
−
1
6
−
5
)
=
?
1
3
−
5
–
√
3
−
5
2
3
3
5
–
√
5
4
5
–
√
−
3
5
−
3
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
(
1
9
–
√
−
8
–
√
−
1
8
–
√
−
7
–
√
+
1
7
–
√
−
6
–
√
−
1
6
–
√
−
5
–
√
)
=
9
–
√
+
8
–
√
−
8
–
√
−
7
–
√
+
7
–
√
+
6
–
√
−
6
–
√
−
5
–
√
=
9
–
√
−
5
–
√
=
3
−
5
–
√
(
1
9
−
8
−
1
8
−
7
+
1
7
−
6
−
1
6
−
5
)
=
9
+
8
−
8
−
7
+
7
+
6
−
6
−
5
=
9
−
5
=
3
−
5
05.
If
(
x
+
1
x
)
= 2,
(
x
+
1
x
)
= 2,
then
(
x
−
1
x
)
(
x
−
1
x
)
is equal to = ?
1
0
2
1
3
2
4
5
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
(
x
+
1
x
)
= 2
⇒
(
x
+
1
x
)
2
=
2
2
⇒
x
2
+
1
x
2
+
2
=
4
⇒
x
2
+
1
x
2
=
2
⇒
x
2
+
1
x
2
−
2.
x
.
1
x
=
2
−
2
=
0
⇒
(
x
−
1
x
)
2
= 0
⇒
x
−
1
x
=
0
(
x
+
1
x
)
= 2
⇒
(
x
+
1
x
)
2
=
2
2
⇒
x
2
+
1
x
2
+
2
=
4
⇒
x
2
+
1
x
2
=
2
⇒
x
2
+
1
x
2
−
2.
x
.
1
x
=
2
−
2
=
0
⇒
(
x
−
1
x
)
2
= 0
⇒
x
−
1
x
=
0
06.
(
x
+
1
x
)
(
x
−
1
x
)
(
x
2
+
1
x
2
−
1
)
(
x
2
+
1
x
2
+
1
)
(
x
+
1
x
)
(
x
−
1
x
)
(
x
2
+
1
x
2
−
1
)
(
x
2
+
1
x
2
+
1
)
is equal to ?
1
x
6
−
1
x
6
x
6
−
1
x
6
2
x
8
−
1
x
8
x
8
−
1
x
8
3
x
6
+
1
x
6
x
6
+
1
x
6
4
x
8
+
1
x
8
x
8
+
1
x
8
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
Given expression ,
[
(
x
+
1
x
)
(
x
2
+
1
x
2
−
x
.
1
x
)
]
[
(
x
−
1
x
)
(
x
2
+
1
x
2
x
.
1
x
)
]
=
(
x
3
+
1
x
3
)
(
x
3
+
1
x
3
)
=
x
6
+
1
x
6
Given expression ,
[
(
x
+
1
x
)
(
x
2
+
1
x
2
−
x
.
1
x
)
]
[
(
x
−
1
x
)
(
x
2
+
1
x
2
x
.
1
x
)
]
=
(
x
3
+
1
x
3
)
(
x
3
+
1
x
3
)
=
x
6
+
1
x
6
07.
The expression
1
x
−
1
−
1
x
+
1
−
2
x
2
+
1
−
4
x
4
+
1
1
x
−
1
−
1
x
+
1
−
2
x
2
+
1
−
4
x
4
+
1
is equal to = ?
1
8
x
8
+
1
8
x
8
+
1
2
8
x
8
−
1
8
x
8
−
1
3
8
x
7
−
1
8
x
7
−
1
4
8
x
7
+
1
8
x
7
+
1
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
Given expression,
(
1
x
−
1
−
1
x
+
1
)
−
2
x
2
+
1
−
4
x
4
+
1
=
[
(
x
+
1
)
−
(
x
−
1
)
(
x
−
1
)
(
x
+
1
)
]
−
2
x
2
+
1
−
4
x
4
+
1
=
(
2
x
2
−
1
−
2
x
2
+
1
)
−
4
x
4
+
1
=
[
2
(
x
2
+
1
)
−
(
x
2
−
1
)
(
x
2
−
1
)
(
x
2
+
1
)
]
−
4
x
4
+
1
=
4
x
4
−
1
−
4
x
4
+
1
=
4
(
x
4
+
1
)
−
4
(
x
4
−
1
)
(
x
4
−
1
)
(
x
4
+
1
)
=
8
x
8
−
1
Given expression,
(
1
x
−
1
−
1
x
+
1
)
−
2
x
2
+
1
−
4
x
4
+
1
=
[
(
x
+
1
)
−
(
x
−
1
)
(
x
−
1
)
(
x
+
1
)
]
−
2
x
2
+
1
−
4
x
4
+
1
=
(
2
x
2
−
1
−
2
x
2
+
1
)
−
4
x
4
+
1
=
[
2
(
x
2
+
1
)
−
(
x
2
−
1
)
(
x
2
−
1
)
(
x
2
+
1
)
]
−
4
x
4
+
1
=
4
x
4
−
1
−
4
x
4
+
1
=
4
(
x
4
+
1
)
−
4
(
x
4
−
1
)
(
x
4
−
1
)
(
x
4
+
1
)
=
8
x
8
−
1
08.
The Value of (√6 + √10 - √21 - √35) × (√6 - √10 + √21 - √35) = ?
1
27
2
18
3
40
4
10
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
(√6 + √10 - √21 - √35) × (√6 - √10 + √21 - √35)
= {(√6 - √35) + (√10 - √21)} × {(√6 - √35) - (√10 - √21)}
= (√6 - √35)
2
- (√10 - √21)
2
= 6 + 35 - 2√210 - 10 - 21 + 2√210
= 41 - 31
= 10
09.
If
x
=
3
–
√
+
2
–
√
,
x
=
3
+
2
,
then the value of
x
3
−
1
x
3
x
3
−
1
x
3
is?
1
10
2
–
√
10
2
2
14
2
–
√
14
2
3
22
2
–
√
22
2
4
8
2
–
√
8
2
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
x
=
3
–
√
+
2
–
√
1
x
=
1
3
–
√
+
2
–
√
×
3
–
√
−
2
–
√
3
–
√
−
2
–
√
1
x
=
3
–
√
−
2
–
√
x
3
−
1
x
3
=
[
x
−
1
x
]
3
+
3
×
x
×
1
x
(
x
−
1
x
)
=
(
3
–
√
+
2
–
√
−
3
–
√
+
2
–
√
)
3
+
3
(
3
–
√
+
2
–
√
−
3
–
√
+
2
–
√
)
=
(
2
2
–
√
)
3
+
3
(
2
2
–
√
)
=
16
2
–
√
+
6
2
–
√
=
22
2
–
√
x
=
3
+
2
1
x
=
1
3
+
2
×
3
−
2
3
−
2
1
x
=
3
−
2
x
3
−
1
x
3
=
[
x
−
1
x
]
3
+
3
×
x
×
1
x
(
x
−
1
x
)
=
(
3
+
2
−
3
+
2
)
3
+
3
(
3
+
2
−
3
+
2
)
=
(
2
2
)
3
+
3
(
2
2
)
=
16
2
+
6
2
=
22
2
10.
If
p
a
+
q
b
+
r
c
=
1
p
a
+
q
b
+
r
c
=
1
and
a
p
+
b
q
+
c
r
=
0
a
p
+
b
q
+
c
r
=
0
where a, b, c, p, q, r are non-zero real numbers, then
p
2
a
2
+
q
2
b
2
+
r
2
c
2
p
2
a
2
+
q
2
b
2
+
r
2
c
2
is equal to = ?
1
0
2
1
3
3
4
9
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
a
p
+
b
q
+
c
r
=
0
⇒
a
q
r
+
b
p
r
+
c
p
q
=
0....
(
i
)
p
a
+
q
b
+
r
c
=
1
⇒
(
p
a
+
q
b
+
r
c
)
2
=
1
⇒
p
2
a
2
+
q
2
b
2
+
r
2
c
2
+
2
(
p
q
a
b
+
p
r
a
c
+
q
r
b
c
)
=
1
⇒
p
2
a
2
+
q
2
b
2
+
r
2
c
2
+
2
(
p
q
c
+
p
r
b
+
q
r
a
)
a
b
c
=
1
⇒
p
2
a
2
+
q
2
b
2
+
r
2
c
2
=
1....
[
using (i)
]
a
p
+
b
q
+
c
r
=
0
⇒
a
q
r
+
b
p
r
+
c
p
q
=
0....
(
i
)
p
a
+
q
b
+
r
c
=
1
⇒
(
p
a
+
q
b
+
r
c
)
2
=
1
⇒
p
2
a
2
+
q
2
b
2
+
r
2
c
2
+
2
(
p
q
a
b
+
p
r
a
c
+
q
r
b
c
)
=
1
⇒
p
2
a
2
+
q
2
b
2
+
r
2
c
2
+
2
(
p
q
c
+
p
r
b
+
q
r
a
)
a
b
c
=
1
⇒
p
2
a
2
+
q
2
b
2
+
r
2
c
2
=
1....
[
using (i)
]
Page 1 Of 2
First
Prev
1
2
Next
Last
×
Report
Report:
Subject
Exam
E-Book
Video Class
Test
Classes
E-Book