Hello Guest
Login
Books
E-Book
Exam
Video Class
All Subjects
PDF Study Material
Exam Wise
Subject Wise
Current Affairs
Paid Course
Install App
-
Track
×
India’s No.1 Educational Platform For UPSC,PSC And All Competitive Exam
Download Our App
Home
Books
PDF Study Material
Exam Wise
Subject Wise
Current Affairs
Free Video Class
Paid Course
Subjects
Exam
E-Book
Store91
3
Today Class
Track
Login
Algebra - 01
01.
If x, y, z are the three factors of a
3
- 7a - 6, then value of x + y + z will be?
1
3a
2
3
3
6
4
a
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
a
3
−
7
a
−
6
(
a
+
1
)
(
a
3
−
a
−
6
)
(
a
+
1
)
(
a
+
2
)
(
a
−
3
)
Now
,
Sum of factors
(
a
+
1
)
+
a
+
2
+
a
−
3
=
3
a
a
3
−
7
a
−
6
(
a
+
1
)
(
a
3
−
a
−
6
)
(
a
+
1
)
(
a
+
2
)
(
a
−
3
)
Now
,
Sum of factors
(
a
+
1
)
+
a
+
2
+
a
−
3
=
3
a
02.
If x - 11, then the value of x
5
- 12x
4
+ 12x
3
- 12x
2
+ 12x - 1 is?
1
11
2
10
3
12
4
-10
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
x
5
−
12
x
4
+
12
x
3
−
12
x
2
+
12
x
−
1
=
x
5
−
11
x
4
−
x
4
+
11
x
3
+
x
3
−
11
x
2
−
x
2
+
11
x
+
x
−
1
Put
x
=
11
=
11
5
−
11.11
4
−
11
4
+
11.11
3
+
11
3
−
11.11
2
−
11
2
+
11.11
+
11
−
1
=
11
−
1
=
10
x
5
−
12
x
4
+
12
x
3
−
12
x
2
+
12
x
−
1
=
x
5
−
11
x
4
−
x
4
+
11
x
3
+
x
3
−
11
x
2
−
x
2
+
11
x
+
x
−
1
Put
x
=
11
=
11
5
−
11.11
4
−
11
4
+
11.11
3
+
11
3
−
11.11
2
−
11
2
+
11.11
+
11
−
1
=
11
−
1
=
10
03.
If a + b + c + d = 4, then the value of
1
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
1
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
+
1
(
1
−
b
)
(
1
−
c
)
(
1
−
d
)
1
(
1
−
b
)
(
1
−
c
)
(
1
−
d
)
+
1
(
1
−
c
)
(
1
−
d
)
(
1
−
a
)
1
(
1
−
c
)
(
1
−
d
)
(
1
−
a
)
+
1
(
1
−
d
)
(
1
−
a
)
(
1
−
b
)
1
(
1
−
d
)
(
1
−
a
)
(
1
−
b
)
is?
1
0
2
1
3
4
4
1 + abcd
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
1
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
+
1
(
1
−
b
)
(
1
−
c
)
(
1
−
d
)
+
1
(
1
−
c
)
(
1
−
d
)
(
1
−
a
)
+
1
(
1
−
d
)
(
1
−
a
)
(
1
−
b
)
=
1
−
d
+
1
−
a
+
1
−
b
+
1
−
c
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
(
1
−
d
)
=
4
−
(
a
+
b
+
c
+
d
)
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
(
1
−
d
)
=
4
−
4
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
(
1
−
d
)
=
0
1
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
+
1
(
1
−
b
)
(
1
−
c
)
(
1
−
d
)
+
1
(
1
−
c
)
(
1
−
d
)
(
1
−
a
)
+
1
(
1
−
d
)
(
1
−
a
)
(
1
−
b
)
=
1
−
d
+
1
−
a
+
1
−
b
+
1
−
c
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
(
1
−
d
)
=
4
−
(
a
+
b
+
c
+
d
)
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
(
1
−
d
)
=
4
−
4
(
1
−
a
)
(
1
−
b
)
(
1
−
c
)
(
1
−
d
)
=
0
04.
If x = y + z then x
3
- y
3
- z
3
is?
1
0
2
3xyz
3
-3xyz
4
1
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
Given ,
x
=
y
+
z
∴
x
−
y
−
z
=
0
Then
x
3
−
y
3
−
z
3
=
3
x
y
z
Given ,
x
=
y
+
z
∴
x
−
y
−
z
=
0
Then
x
3
−
y
3
−
z
3
=
3
x
y
z
05.
If
x
2
+
1
x
2
=
98
,
x
2
+
1
x
2
=
98
,
(
x
>
0
)
,
(
x
>
0
)
,
then the value of
3
+
1
x
3
3
+
1
x
3
is?
1
970
2
1030
3
-970
4
-1030
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
x
2
+
1
x
2
=
98
⇒
x
2
+
1
x
2
+
2
=
100
⇒
(
x
+
1
x
)
2
=
100
⇒
x
+
1
x
=
10
⇒
x
3
+
1
x
3
+
3.
x
.
1
x
(
x
+
1
x
)
=
10
3
⇒
x
3
+
1
x
3
=
1000
−
3
×
10
⇒
x
3
+
1
x
3
=
970
x
2
+
1
x
2
=
98
⇒
x
2
+
1
x
2
+
2
=
100
⇒
(
x
+
1
x
)
2
=
100
⇒
x
+
1
x
=
10
⇒
x
3
+
1
x
3
+
3.
x
.
1
x
(
x
+
1
x
)
=
10
3
⇒
x
3
+
1
x
3
=
1000
−
3
×
10
⇒
x
3
+
1
x
3
=
970
06.
If a
2
+ b
2
+ c
2
= 16, x
2
+ y
2
+ z
2
= 25 and ax + by + cz = 20 then the value of
a
+
b
+
c
x
+
y
+
z
a
+
b
+
c
x
+
y
+
z
= ?
1
3
5
3
5
2
4
5
4
5
3
5
3
5
3
4
5
4
5
4
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
a
2
+
b
2
+
c
2
=
16
,
x
2
+
y
2
+
z
2
=
25
But
b
=
c
=
0
,
But
y
=
z
=
0
a
=
4
x
=
5
Now,
a
x
+
b
y
+
c
z
=
20
4
×
5
+
0
+
0
=
0
20
=
20
(
Satisfy
)
Now,
a
+
b
+
c
x
+
y
+
z
=
4
+
0
+
0
5
+
0
+
0
=
4
5
a
2
+
b
2
+
c
2
=
16
,
x
2
+
y
2
+
z
2
=
25
But
b
=
c
=
0
,
But
y
=
z
=
0
a
=
4
x
=
5
Now,
a
x
+
b
y
+
c
z
=
20
4
×
5
+
0
+
0
=
0
20
=
20
(
Satisfy
)
Now,
a
+
b
+
c
x
+
y
+
z
=
4
+
0
+
0
5
+
0
+
0
=
4
5
07.
If x
4
+ 2x
3
+ ax
2
+ bx + 9 is a perfect square where a and b are positive real numbers, then the value of a and b is?
1
a = 5, b = 6
2
a = 6, b = 7
3
a = 7, b = 7
4
a = 7, b = 8
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
x
4
+
2
x
3
+
a
x
2
+
b
x
+
9
Put
x
=
1
=
1
+
2
×
1
+
a
+
b
+
9
=
1
+
2
+
a
+
b
+
9
=
13
+
a
+
b
x
4
+
2
x
3
+
a
x
2
+
b
x
+
9
Put
x
=
1
=
1
+
2
×
1
+
a
+
b
+
9
=
1
+
2
+
a
+
b
+
9
=
13
+
a
+
b
To make a perfect square numbers value of a + b must be either 3 or 13
Now, option (2) a = 6, b = 7
∴
a
+
b
=
12
make perfect square
(
25
=
5
2
)
∴
a
+
b
=
12
make perfect square
(
25
=
5
2
)
08.
If
x
=
5
–
√
+
1
5
–
√
−
1
x
=
5
+
1
5
−
1
and
y
=
5
–
√
−
1
5
–
√
+
1
,
y
=
5
−
1
5
+
1
,
then the value of
x
2
+
x
y
+
y
2
x
2
−
x
y
+
y
2
x
2
+
x
y
+
y
2
x
2
−
x
y
+
y
2
is?
1
3
4
3
4
2
5
3
5
3
3
4
3
4
3
4
3
5
3
5
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
x
=
5
–
√
+
1
5
–
√
−
1
and y
=
5
–
√
−
1
5
–
√
+
1
∴
x
=
1
y
⇔
x
y
=
1
x
+
y
=
5
–
√
+
1
5
–
√
−
1
+
5
–
√
−
1
5
–
√
+
1
⇒
x
+
y
=
5
+
1
+
2
5
–
√
+
5
+
1
−
2
5
–
√
5
−
1
⇒
x
+
y
=
12
4
⇒
x
+
y
=
3
⇒
x
+
1
x
=
3
⇒
x
2
+
1
x
2
=
(
3
)
2
−
2
⇒
x
2
+
1
x
2
=
7
Now,
x
2
+
x
y
+
y
2
x
2
−
x
y
+
y
2
=
x
2
+
y
2
+
x
y
x
2
+
y
2
−
x
y
=
7
+
1
7
−
1
=
8
6
=
4
3
x
=
5
+
1
5
−
1
and y
=
5
−
1
5
+
1
∴
x
=
1
y
⇔
x
y
=
1
x
+
y
=
5
+
1
5
−
1
+
5
−
1
5
+
1
⇒
x
+
y
=
5
+
1
+
2
5
+
5
+
1
−
2
5
5
−
1
⇒
x
+
y
=
12
4
⇒
x
+
y
=
3
⇒
x
+
1
x
=
3
⇒
x
2
+
1
x
2
=
(
3
)
2
−
2
⇒
x
2
+
1
x
2
=
7
Now,
x
2
+
x
y
+
y
2
x
2
−
x
y
+
y
2
=
x
2
+
y
2
+
x
y
x
2
+
y
2
−
x
y
=
7
+
1
7
−
1
=
8
6
=
4
3
09.
If x
2
+ y
2
+ 2x +1 = 0, then the value of x
31
+ y
35
is?
1
-1
2
1
3
0
4
2
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
x
2
+
y
2
+
2
x
+
1
=
0
⇒
(
x
+
1
)
2
+
y
2
=
0
Let
(
x
+
1
)
2
=
0
y
2
=
0
x
=
−
1
,
y
=
0
Now,
x
31
+
y
35
=
(
−
1
)
31
+
(
0
)
35
=
−
1
x
2
+
y
2
+
2
x
+
1
=
0
⇒
(
x
+
1
)
2
+
y
2
=
0
Let
(
x
+
1
)
2
=
0
y
2
=
0
x
=
−
1
,
y
=
0
Now,
x
31
+
y
35
=
(
−
1
)
31
+
(
0
)
35
=
−
1
10.
A complete factorisation of x
4
+ 64 is?
1
(x
2
+ 8)
2
2
(x
2
+ 8)(x
2
- 8)
3
(x
2
- 4x + 8)(x
2
- 4x - 8)
4
(x
2
+ 4x + 8)(x
2
- 4x + 8)
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
(
x
4
+
64
)
=
x
4
+
8
2
+
2.
x
2
.8
−
2.
x
2
.8
=
(
x
2
+
8
)
2
−
(
16
x
2
)
=
(
x
2
+
8
)
2
−
(
4
x
)
2
=
(
x
2
+
8
+
4
x
)
(
x
2
+
8
−
4
x
)
=
(
x
2
+
4
x
+
8
)
(
x
2
−
4
x
+
8
)
(
x
4
+
64
)
=
x
4
+
8
2
+
2.
x
2
.8
−
2.
x
2
.8
=
(
x
2
+
8
)
2
−
(
16
x
2
)
=
(
x
2
+
8
)
2
−
(
4
x
)
2
=
(
x
2
+
8
+
4
x
)
(
x
2
+
8
−
4
x
)
=
(
x
2
+
4
x
+
8
)
(
x
2
−
4
x
+
8
)
Page 1 Of 2
First
Prev
1
2
Next
Last
×
Report
Report:
Subject
Exam
E-Book
Video Class
Test
Classes
E-Book