Hello Guest
Login
Books
E-Book
Exam
Video Class
All Subjects
PDF Study Material
Exam Wise
Subject Wise
Current Affairs
Paid Course
Install App
-
Track
×
India’s No.1 Educational Platform For UPSC,PSC And All Competitive Exam
Download Our App
Home
Books
PDF Study Material
Exam Wise
Subject Wise
Current Affairs
Free Video Class
Paid Course
Subjects
Exam
E-Book
Store91
3
Today Class
Track
Login
algebra - 02
01.
If
p
2
+
q
2
=
7
p
q
,
p
2
+
q
2
=
7
p
q
,
then the value of
p
q
+
q
p
p
q
+
q
p
is equal to?
1
9
2
5
3
7
4
3
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
p
2
+
q
2
=
7
p
q
p
q
+
q
p
=
7
p
2
+
q
2
=
7
p
q
p
q
+
q
p
=
7
(Divide whole equation by pq)
02.
If
x
=
(
0.25
)
1
2
,
x
=
(
0.25
)
1
2
,
y
=
(
0.4
)
2
,
y
=
(
0.4
)
2
,
z
=
(
0.216
)
1
2
z
=
(
0.216
)
1
2
then-
1
y > x > z
2
x > y > z
3
z > x > y
4
x > z > y
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
x
=
(
0.25
)
1
2
x
=
0.25
−
−
−
−
√
2
=
0.5
y
=
(
0.4
)
2
y
=
0.16
z
=
(
0.216
)
1
2
z
=
0.216
−
−
−
−
√
2
=
0.464
∴
x
>
z
>
y
x
=
(
0.25
)
1
2
x
=
0.25
2
=
0.5
y
=
(
0.4
)
2
y
=
0.16
z
=
(
0.216
)
1
2
z
=
0.216
2
=
0.464
∴
x
>
z
>
y
03.
If p
3
- q
3
= (p - q){(p + q)
2
- xpq}, then the value of x is?
1
1
2
-1
3
2
4
-2
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
p
3
−
q
3
=
(
p
−
q
)
{
p
2
+
q
2
+
p
q
}
⇒
(
p
−
q
)
{
(
p
+
q
)
2
−
x
p
q
}
=
(
p
−
q
)
(
p
2
+
q
2
+
p
q
)
⇒
p
2
+
q
2
+
2
p
q
−
x
p
q
=
p
2
+
q
2
+
p
q
⇒
2
p
q
−
p
q
=
x
p
q
⇒
p
q
=
x
p
q
⇒
x
=
1
p
3
−
q
3
=
(
p
−
q
)
{
p
2
+
q
2
+
p
q
}
⇒
(
p
−
q
)
{
(
p
+
q
)
2
−
x
p
q
}
=
(
p
−
q
)
(
p
2
+
q
2
+
p
q
)
⇒
p
2
+
q
2
+
2
p
q
−
x
p
q
=
p
2
+
q
2
+
p
q
⇒
2
p
q
−
p
q
=
x
p
q
⇒
p
q
=
x
p
q
⇒
x
=
1
04.
If pq(p + q) = 1, then the value of
1
p
3
q
3
1
p
3
q
3
-
p
3
p
3
-
q
3
,
q
3
,
is equal to?
1
1
2
2
3
3
4
4
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
p
q
(
p
+
q
)
=
1
⇒
p
+
q
=
1
p
q
⇒
p
3
+
q
3
+
p
q
(
p
+
q
)
=
1
p
3
q
3
⇒
1
p
3
q
3
−
p
3
−
q
3
=
(
13
p
+
q
)
(
p
+
q
)
⇒
1
p
3
q
3
−
p
3
−
q
3
=
3
p
q
(
p
+
q
)
=
1
⇒
p
+
q
=
1
p
q
⇒
p
3
+
q
3
+
p
q
(
p
+
q
)
=
1
p
3
q
3
⇒
1
p
3
q
3
−
p
3
−
q
3
=
(
13
p
+
q
)
(
p
+
q
)
⇒
1
p
3
q
3
−
p
3
−
q
3
=
3
05.
If
x
2
+
1
x
2
=
2
,
x
2
+
1
x
2
=
2
,
then the value of
x
−
1
x
x
−
1
x
is?
1
-2
2
0
3
1
4
-1
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
x
2
+
1
x
2
=
2
⇒
(
x
−
1
x
)
2
+
2.
x
.
1
x
=
2
⇒
x
−
1
x
=
2
−
2
⇒
x
−
1
x
=
0
x
2
+
1
x
2
=
2
⇒
(
x
−
1
x
)
2
+
2.
x
.
1
x
=
2
⇒
x
−
1
x
=
2
−
2
⇒
x
−
1
x
=
0
06.
If
a
2
+
b
2
c
2
a
2
+
b
2
c
2
=
b
2
+
c
2
a
2
b
2
+
c
2
a
2
=
c
2
+
a
2
b
2
c
2
+
a
2
b
2
=
1
k
,
1
k
,
(
k
≠
0
)
(
k
≠
0
)
then k = ?
1
2
2
1
3
0
4
1
2
1
2
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
a
2
+
b
2
c
2
=
b
2
+
c
2
a
2
=
c
2
+
a
2
b
2
=
1
k
Put
a
=
b
=
c
=
1
⇒
1
+
1
1
+
1
+
1
1
+
1
+
1
1
=
1
k
⇒
2
=
2
=
2
=
1
k
⇒
k
=
1
2
a
2
+
b
2
c
2
=
b
2
+
c
2
a
2
=
c
2
+
a
2
b
2
=
1
k
Put
a
=
b
=
c
=
1
⇒
1
+
1
1
+
1
+
1
1
+
1
+
1
1
=
1
k
⇒
2
=
2
=
2
=
1
k
⇒
k
=
1
2
07.
If
(
a
+
1
a
)
2
=
3
,
(
a
+
1
a
)
2
=
3
,
the value of
a
3
+
1
a
3
a
3
+
1
a
3
= ?
1
0
2
3
(
a
+
1
a
)
3
(
a
+
1
a
)
3
3
(
a
2
+
1
a
2
)
3
(
a
2
+
1
a
2
)
4
1
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
(
a
+
1
a
)
2
=
3
⇒
a
+
1
a
=
3
–
√
Taking cube on both sides
⇒
a
3
+
1
a
3
+
3.
a
.
1
a
(
a
+
1
a
)
=
3
3
–
√
⇒
a
3
+
1
a
3
+
3
(
3
–
√
)
=
3
3
–
√
⇒
a
3
+
1
a
3
=
3
3
–
√
−
3
3
–
√
⇒
a
3
+
1
a
3
=
0
(
a
+
1
a
)
2
=
3
⇒
a
+
1
a
=
3
Taking cube on both sides
⇒
a
3
+
1
a
3
+
3.
a
.
1
a
(
a
+
1
a
)
=
3
3
⇒
a
3
+
1
a
3
+
3
(
3
)
=
3
3
⇒
a
3
+
1
a
3
=
3
3
−
3
3
⇒
a
3
+
1
a
3
=
0
08.
If
a
q
−
r
a
q
−
r
=
b
r
−
p
b
r
−
p
=
c
p
−
q
,
c
p
−
q
,
find the value of pa + qb + rc is?
1
0
2
21
3
2
4
-6
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
Let
a
q
−
r
=
b
r
−
p
=
c
p
−
q
=
k
a
q
−
r
=
k
(
On multiplying by
p
)
p
a
=
k
(
p
q
−
p
r
)
.
.
.
.
.
.
(
i
)
In the same way we can write
qb = k
(
q
r
−
q
p
)
.
.
.
.
.
.
.
.
(
i
i
)
And
r
c
=
k
(
r
p
−
r
p
)
.
.
.
.
.
i
i
i
)
On adding equation (i), (ii) and (iii)
p
a
+
q
b
+
r
c
=
k
(
p
q
−
p
r
+
q
r
−
q
p
+
r
p
−
r
q
)
=
0
Let
a
q
−
r
=
b
r
−
p
=
c
p
−
q
=
k
a
q
−
r
=
k
(
On multiplying by
p
)
p
a
=
k
(
p
q
−
p
r
)
.
.
.
.
.
.
(
i
)
In the same way we can write
qb = k
(
q
r
−
q
p
)
.
.
.
.
.
.
.
.
(
i
i
)
And
r
c
=
k
(
r
p
−
r
p
)
.
.
.
.
.
i
i
i
)
On adding equation (i), (ii) and (iii)
p
a
+
q
b
+
r
c
=
k
(
p
q
−
p
r
+
q
r
−
q
p
+
r
p
−
r
q
)
=
0
09.
If
a
3
+
1
a
3
=
2
,
a
3
+
1
a
3
=
2
,
then the value of
a
2
+
1
a
a
2
+
1
a
is (a positive number) ?
1
1
2
2
3
3
4
4
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
But
a
=
1
a
3
+
1
a
3
=
2
⇒
1
3
+
1
1
3
=
2
⇒
2
=
2
(
Satisfy
)
So,
a
2
+
1
a
=
1
2
+
1
1
=
2
But
a
=
1
a
3
+
1
a
3
=
2
⇒
1
3
+
1
1
3
=
2
⇒
2
=
2
(
Satisfy
)
So,
a
2
+
1
a
=
1
2
+
1
1
=
2
10.
If
x
+
1
9
x
=
4
,
x
+
1
9
x
=
4
,
then
9
x
2
+
1
9
x
2
9
x
2
+
1
9
x
2
is?
1
140
2
142
3
144
4
146
View Answer
Discuss in forum
Workspace
Report
Answer:-
1
Explanation:-
Solution:
x
+
1
9
x
=
4
Multiply by 3 both side
⇒
3
x
+
1
3
x
=
12
Squaring both sides
⇒
9
x
2
+
1
9
x
2
+
2
×
3
x
×
1
3
x
=
144
⇒
9
x
2
+
1
9
x
2
+
2
=
144
⇒
9
x
2
+
1
9
x
2
=
142
x
+
1
9
x
=
4
Multiply by 3 both side
⇒
3
x
+
1
3
x
=
12
Squaring both sides
⇒
9
x
2
+
1
9
x
2
+
2
×
3
x
×
1
3
x
=
144
⇒
9
x
2
+
1
9
x
2
+
2
=
144
⇒
9
x
2
+
1
9
x
2
=
142
Page 1 Of 2
First
Prev
1
2
Next
Last
×
Report
Report:
Subject
Exam
E-Book
Video Class
Test
Classes
E-Book